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At this Institute of Mining, Siberian Section of the Russian Academy of Sciences, we have investigated the formation 
of cracks and the fracture of rocks when they are loaded, by recording the signals of electromagnetic radiation, and we have 

also investigated its spectral-time characteristics [1, 2]. The results obtained in [3, 4] were used, in which the idea of a 

concentration criterion was introduced for the characteristic of the fracture process, while the process itself was regarded as 
consisting of several stages. It was shown in [1] that the uncorrelated buildup of cracks corresponds to fracture stage I (the 
buildup of microcracks), the formation of a main crack zone corresponds to stage II (macrofracture), whole the splitting of the 
rock into parts corresponds to stage III (post fracture). 

This paper is a continuation of [5], where an experiment on the loading of rock specimens, its method and the results 

obtained, represented in the form of spectral-time matrices o . . . .  ~ctromagnetic signals, were described in some detail. Below 
we consider the predictive characteristics of the fractt 721 ~tained by analyzing the spectral characteristics of the 

electromagnetic signals recorded during an experiment at different stages of the loading corresponding to stages II and III of 
the fracture process. 

Table 1 shows the results of an experiment for a specimen of fine-grained syenite (from the Tashtagol'skii deposit), 
where the arrow on the left denotes the direction in which the time increases from the beginning of loading and the load itself, 

respectively, the arrow above the Table 1 indicates the increase in the spectral frequencies, while the isolated printed numbers 
in each row of the spectral-time matrix, together with the arrow in the Table 1, demonstrate the change in the maximum 
spectral amplitudes A as the load increases at stages II and III of the fracture process. The results of an analysis of these tables 

(the spectral-time matrices) were presented in [6, 7]. 

We will further consider the maximum spectral amplitude A corresponding to its spectral frequency f, the increment 
of the maximum spectral amplitude AA as a function of the time t (Fig. 1), and the derivatives AA/At, AA/Af as a function 
of the time t (Fig. 2) and the frequency f (Fig. 3) (here and below we use reduced notation for the derivatives). 

It can be seen from Fig. 1 that A and f reach maximum values at the same instant of time, in this case when t --- 22 

msec (see Table 1), and the parts of the curves on the left of these maxima correspond to stage II of the fracture, while the 
parts to the right correspond to stage III. As the loading time increases the increment of the maximum spectral amplitudes A 

falls and reaches a zero value, intersecting the abscissa axis at the instant of time t = 22 msec. Note that the graphs in Fig. 
1, up to the instant of time t --- msec, correspond exclusively to the electromagnetic signal obtained as a result of the fracture 

of the rock itself. The continuation of the graph (stage HI of the fracture) contains, in addition to the useful signal, considerable 
experimental interference and is ignored in this analysis. The approach of the values of the functions A and f to the maximum 
values and the simultaneous transition of AA through zero can serve as predictive indicators for determining the instant when 
the loaded rock begins to separate into parts. 

We will consider the features of the derivatives of the maximum spectral amplitude with respect to time and with 
respect to frequency. 
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In Fig. 2 we show graphs of the derivative AA/At and its modulus t AA/Atl, and also of the derivative AA/Af with 

respect to the spectral frequency f as a function of the time t. The graph of [ AA/At [ and AA/&f have extrema (minima) in the 

region of the instant of  time t ~- 22 mse 9, while the graph of AA/At, in the region of the same point, passes through zero. 
These features of these quantities can be used as a predictive indicator that the rock is about to fracture. 

In Fig. 3 we show graphs of the spectral amplitude A and its derivatives AA/At and AA/Af as a function of the spectral 

frequency f. Here the quantities are functions of  two variables t and f and their graphs are different. It follows from Fig. 3 that 
at stage II of the fracture the amplitude A increases gradually as f increases, and after the load reaches a critical value, 
corresponding to the occurrence of the highest maximum spectral amplitude and its corresponding frequency (f = 1.47 kHz), 

its graph turns in the opposite direction and moves in the direction in which A decreases, at stage II the parameters A and f 

increase, while at stage III they decrease. 
This transition from a simultaneous increase to a simultaneous decrease in both parameters was suggested in [8] to be 

an indication of the beginning of the fracture of the loaded rock into parts. It can be seen from Fig. 3 that the graphs of AA/At 

and AA/Af as a function of f at stage II of the fracture decrease, reaching their minimum values at a frequency f = 1.47 kHz, 

and then, increasing in modulus, transfer to the lower-frequency region (stage III). All three functions considered have a single 
common feature, which is that, after reaching the maximum frequency, all the functions transfer once more into the lower- 

frequency region. Consequently, the transition from the high-frequency region (stage II) to the lower-frequency region (stage 
II) can serve as a predictive characteristic that the rock is transferring to the stage of splitting into parts. 
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Hence, the features of the spectral composition of the signals of the electromagnetic radiation and the behavior of the 
functions considered enable us to recommend a number of methods of predicting the fracture of rocks. These are as follows. 

The simultaneous increase in the maximum spectral amplitude A and the corresponding frequency f as the load 
increases and their subsequent reduction indicate that the instant when the continuous rock breaks into parts is approaching. 

The transition through zero of the quantity AA as the load increases (and the time t, correspondingly) can also serve 
as a predictive indicator that the instant of fracture is approaching. 

A simultaneous reduction in the rate of variation (the derivative) of the maximum spectral amplitude and its modulus 

while the load is increasing and of the derivative of the maximum spectral amplitude with respect to frequency as a fimction 

of the time to values close to zero, and also their subsequent increase in modulus, serve as a predictive characteristic of the 
approach of fracture. 

A reduction in the derivatives of the maximum spectral amplitude with respect to time and frequency as a fimction of 
the change in the spectral frequency to a minimum value at the maximum frequency for both quantities and their subsequent 

increase in modulus confirm that fracture of the rock is about to begin. 
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